skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sweet, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cyber Intrusion alerts are commonly collected by corporations to analyze network traffic and glean information about attacks perpetrated against the network. However, datasets of true malignant alerts are rare and generally only show one potential attack scenario out of many possible ones. Furthermore, it is difficult to expand the analysis of these alerts through artificial means due to the complexity of feature dependencies within an alert and lack of rare yet critical samples. This work proposes the use of a Mutual Information constrained Generative Adversarial Network as a means to synthesize new alerts from historical data. Histogram Intersection and Conditional Entropy are used to show the performance of this model as well as its ability to learn intricate feature dependencies. The proposed models are able to capture a much wider domain of alert feature values than standard Generative Adversarial Networks. Finally, we show that when looking at alerts from the perspective of attack stages, the proposed models are able to capture critical attacker behavior providing direct semantic meaning to generated samples. 
    more » « less